Term Information

Effective Term

General Information

Course Bulletin Listing/Subject Area
Fiscal Unit/Academic Org
College/Academic Group
Level/Career
Course Number/Catalog
Course Title
Transcript Abbreviation
Course Description
Semester Credit Hours/Units

Offering Information

Length Of Course

Flexibly Scheduled Course
Does any section of this course have a distance No
education component?
Grading Basis
Repeatable
Course Components
Grade Roster Component
Credit Available by Exam
Admission Condition Course
Off Campus
Campus of Offering

Prerequisites and Exclusions

No

No
No

Mathematics
Mathematics - D0671
Arts and Sciences
Graduate, Undergraduate
5588
Practicum in Actuarial and Quantitative Risk Management
Pract Quant Risk
This course introduces students to the real world practice relative to advanced Actuarial Science topics and more specifically to the MAQRM program.
Fixed: 3

14 Week, 7 Week, 6 Week
Never

Letter Grade

Lecture
Lecture

Never
Columbus

Prerequisites/Corequisites
CSE 1222 or CSE 1223 or CSE 1224 or CSE 2111, and Math 2153, Math 3618, and Math 4530 or Stat 4201, and Stat 4202, Math 2568; or permission by the department; or graduate standing.
Exclusions
Electronically Enforced
Yes

Cross-Listings

Cross-Listings

Subject/CIP Code

Subject/CIP Code

Subsidy Level
Intended Rank
27.0101

Doctoral Course
Junior, Senior, Masters

Requirement/Elective Designation

The course is an elective (for this or other units) or is a service course for other units

Course Details

Course goals or learning objectives/outcomes

Content Topic List

Sought Concurrence

Attachments

Comments

- To introduce students to the real world practice and to improve their communication skills.
- Option Pricing and Simulation
- Market Optimization and Elasticity Modeling
- Brownian Motion and Its Application in Quantitative Finance
- Pension and Retirement
- Data Analysis and Modeling

No

- 5588proposal+syllabus+revisions.pdf: Syllabus (3rd) + revisions +sample work
(Syllabus. Owner: Husen, William J)
- ****Approval Contingencies: Prerequisites on submission changed to match syllabus
***Newer: New syllabus attached, which includes course revisions and sample work.
${ }^{* * *}$ New: Updated syllabus including project grading. Updated course title.

Changed title, course syllabus/description and intended rank to reflect a course that advanced undergraduate actuarial science majors could take in addition to MAQRM students. With this, we would like to keep it as a 5000level course. (by Husen, William J on 05/11/2023 11:46 AM)

- See feedback email sent to dept. 10/6/21 RLS

See feedback email sent to dept. 11-1-22 RLS
Please see feedback email sent to department 04-28-2023 RLS (by Steele,Rachel Lea on 04/28/2023 11:31 PM)

- Hi Bill, A 5000 -level course is intended for both undergraduate and graduate students. If this course is only for the

MAQRM program, then it should be pitched at the 6000 level, right? (by Vankeerbergen,Bernadette Chantal on 09/20/2021 12:09 PM)

COURSE REQUEST
5588 - Status: PENDING

Last Updated: Vankeerbergen,Bernadette Chantal 05/27/2023

Workflow Information

Status	User(s)	Date/Time	Step
Submitted	Husen, William J	09/17/2021 11:24 AM	Submitted for Approval
Approved	Husen, William J	09/17/2021 11:29 AM	Unit Approval
Revision Requested	Vankeerbergen,Bernadet te Chantal	09/20/2021 12:09 PM	College Approval
Submitted	Husen, William J	09/21/2021 08:56 AM	Submitted for Approval
Approved	Husen, William J	09/21/2021 08:57 AM	Unit Approval
Approved	Vankeerbergen,Bernadet te Chantal	09/22/2021 02:09 PM	College Approval
Revision Requested	Steele,Rachel Lea	10/06/2021 02:56 PM	ASCCAO Approval
Submitted	Husen, William J	09/29/2022 01:13 PM	Submitted for Approval
Approved	Husen, William J	09/29/2022 01:13 PM	Unit Approval
Approved	Vankeerbergen,Bernadet te Chantal	10/15/2022 12:39 PM	College Approval
Revision Requested	Steele,Rachel Lea	11/01/2022 09:56 AM	ASCCAO Approval
Submitted	Husen, William J	03/06/2023 11:40 AM	Submitted for Approval
Approved	Husen, William J	03/23/2023 10:27 AM	Unit Approval
Approved	Vankeerbergen,Bernadet te Chantal	03/25/2023 03:58 PM	College Approval
Revision Requested	Steele,Rachel Lea	04/28/2023 11:31 PM	ASCCAO Approval
Submitted	Husen, William J	05/11/2023 11:46 AM	Submitted for Approval
Approved	Husen, William J	05/11/2023 11:47 AM	Unit Approval
Approved	Vankeerbergen,Bernadet te Chantal	05/27/2023 06:44 PM	College Approval
Pending Approval	Jenkins,Mary Ellen Bigler Hanlin,Deborah Kay Hilty,Michael Vankeerbergen,Bernadet te Chantal Steele,Rachel Lea	05/27/2023 06:44 PM	ASCCAO Approval

Math 5588 - Practicum in Actuarial and Quantitative Risk Management

- COURSE DESCRIPTION

To introduce students to the real world practice and to improve their communication skills. There will be presentations by visiting professionals on topics drawn from their fields of expertise, and projects on real application problems will be assigned. Students will work in groups on these projects and give presentations.
The course is mainly for MAQRM students, but it is open to advanced undergraduate students in mathematics or actuarial science, and to graduate students, including PhD students, in related fields.

- COURSE OBJECTIVES

Upon completing the course, the students will

- gain basic knowledge of real world practice in actuarial and quantitative risk management;
- improve ability and skills in applying mathematics, statistics, and computer technology to modeling and solving business problems related to actuarial and quantitative risk management;
- improve team work skills through group projects;
- improve communication skills in preparing and conducting technical presentations for general audience.

- CLASS FORMAT

Lecture and student presentation - 3 hours a week

- PREREQUISITE

- CSE 1222 or CSE 1223 or CSE 1224 or CSE 2111, Math 2153, Math 3618, Math 4530 or Stat 4201, Stat 4202, Math 2568; or
- permission by the department; or
- graduate standing

- TEXTBOOK

There is no text book for the course. However, knowledge from Calculus, Linear Algebra, Basic Financial Math, Probability, Statistics, and Computer Science will be used in completing the class projects. Here is a list of recommended texts for review.

- Calculus: Calculus by James Stewart (any edition), or any calculus text you have.
- Linear Algebra: Linear Algebra: A Modern Introduction by David Poole, or any linear algebra text you have.
- Interest Theory: Mathematics of Investment and Credit by Samuel Broverman (any edition)
- Probability: Probability by Pitman, or any probability text you have.
- Statistics: Probability and Statistics by M. Evans and J. Rosenthal, or any text you have.

- TECHNOLOGY

As in most actuarial and quantitative risk management courses, computer technology will be heavily used in this class. Students are supposed to have exposures to financial calculator, Excel, R, or Python. For your convenience, here is a list of resources for some of these technologies.

- Financial Calculator: BA II Professional Calculator
(https://www.actexmadriver.com/Assets/ClientDocs/prod_preview/TIBA35P_Guidebook.pdf)
- Excel:
* Excel Tutorial (https://www.w3schools.com/excel/index.php)
* Excel - VBA by T. Muneer and S. Ivanova, Springer
-R :
* An Introduction to R (https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf)
* An Introduction to R (https://intro2r.com/)
- Python
* Python Introduction
(https://www.w3schools.com/python/python_intro.asp)
* Python Introduction
(https://developers.google.com/edu/python/introduction)

- GROUP PROJECTS

There are several group projects with topics from actuarial and quantitative risk management. Each group consists of two or three students. For each project, a group should discuss and study the case, create a model for the problem, decide on an analytical tool, gather and process data and information, analyze results, and prepare a presentation. Visiting professionals will be available to answer questions between classes when students working on each project. After completing the project, each group presents its result to the whole class, and visiting professionals give comments and feedbacks. The projects will be evaluated based on

- Problem formulation and model selection
- Selection and design of programing or computation methods
- Data preparation and processing
- Quality and accuracy of the result
- Presentation

Presentations should be in a format similar to PowerPoint with supporting technical detail or programming output. Each presentation should be about 20 minutes, and will be followed by 10 minutes or so questions, comments, and discussion.
The due date of each project is usually one week from when the project is assigned, and each group has a week to work on the project. During the week, the instructor and/or the visiting professionals are available to answer questions via email or during the office hours.

- INDIVIDUAL PRESENTATION

Each student will give a presentation on a topic of his/her choice. The topic should be from actuarial science, financial math, data science, business finance, economics, or any related field. Examples of topics include

- exposition of an idea or theory,
- introduction to a technical tool or platform,
- modeling of a real problem and its solution,
- etc.

Each student should discuss his/her choice of topic with the instructor before starting working on the presentation, and should discuss the result with the instructor before presenting to the whole class.

- The topic of the presentation is due by Thursday of the 7th week.
- The final presentation is due Thursday of the 10th week.
- Class presentation will start in the 11th week.

The presentation should be in a format similar to PowerPoint with supporting technical detail, computer output, or program demonstration. The presentation should be around 20 minutes, and 10 minutes will be allocated after each presentation for questions, discussions, and comments.

- EXPECTED WORKLOAD

This is a 3-credit-hour course. According to Ohio State policy (go.osu.edu/credithours), students should expect around 3 hours per week of time spent on direct instruction (instructor content and Carmen activities, for example), and students are expected to spend 6 or more hours each week to study and to work on the class projects or individual presentation.

- PEER AND SELF EVALUATION ON GROUP PROJECTS

There will be a midterm and a final peer evaluation for group projects. The midterm evaluation will cover the first half of the semester, and the final evaluation will cover the second half. In these evaluations, each student gives him/herself and each member of his/her group a score from A to E based on

- Attendance of group work meetings

$$
\begin{array}{lr}
\text { A: } & 90.00-100.00 \% \text { attendance } \\
\text { A-: } & 88.00-89.99 \% \text { attendance } \\
\text { B+: } & 85.00-87.99 \% \text { attendance } \\
\text { B: } & 80.00-84.99 \% \text { attendance } \\
\text { B-: } & 78.00-79.99 \% \text { attendance } \\
\text { C+: } & 75.00-77.99 \% \text { attendance } \\
\text { C: } & 70.00-74.99 \% \text { attendance } \\
\text { C-: } & 68.00-69.99 \% \text { attendance } \\
\text { D+: } & 65.00-67.99 \% \text { attendance } \\
\text { D: } & 60.00-64.99 \% \text { attendance } \\
\text { D-: } & 50.00-59.99 \% \text { attendance } \\
\text { E: } & <50.00 \% \text { attendance }
\end{array}
$$

- Participation and contribution to each group project

A:	$90.00-100.00 \%$ contribution
A-:	$88.00-89.99 \%$ contribution
B+:	$85.00-87.99 \%$ contribution
B:	$80.00-84.99 \%$ contribution
B-:	$78.00-79.99 \%$ contribution
C+:	$75.00-77.99 \%$ contribution
C:	$70.00-74.99 \%$ contribution
C-::	$68.00-69.99 \%$ contribution
D+:	$65.00-67.99 \%$ contribution
D:	$60.00-64.99 \%$ contribution
D-:	$50.00-59.99 \%$ contribution
E:	$<50.00 \%$ contribution

For each student, the instructor will

- summarize the scores the student receives from the self and peer evaluations, and
- evaluate the student's completion of the evaluation considering the thoughtful and constructive comments the student provides.

Based on this summary (50\%) and the instructor's evaluation (50\%), a score is assigned to the student.

The midterm evaluation takes place in the 7th week of the semester, and the final evaluation takes place in the 14th week of the semester. The evaluation form is due on Thursday of the week.

A peer evaluation form is attached.

- GRADE

The course grade is based on student's participation, performance, projects, and the class presentations. The distribution is

- Class attendance, 10\%,
- Group projects, 50\%
- Individual presentation, 20\%
- Self and peer evaluation, 20\%

A letter grade will be determined by the total percent a student receives for the semester:

A:	$90.00-100.00 \%$	A-: $88.00-89.99 \%$	
B+:	$85.00-87.99 \%$	B:	$80.00-84.99 \%$
B-:	$78.00-79.99 \%$	C+:	$75.00-77.99 \%$
C:	$70.00-74.99 \%$	C-:	$68.00-69.99 \%$
D+:	$65.00-67.99 \%$	D:	$60.00-64.99 \%$
D-:	$50.00-59.99 \%$	E:	$<50.00 \%$

- SAMPLE SCHEDULE

- Week 1 Introduction and Technical Preparation
- Week 2 Splines and Smoothing, Bootstrap (Liberty Mutual)
- Week 3 Rate Making (Nationwide P\& C)
- Week 4 \& 5 Brownian Motion and Its Application in Quantitative Finance
- Week 6 Pension and Retirement (Aon)
- Week 7 Market Optimization and Elasticity Modeling (Cincinnati Insurance)
- Week 8 Annuities (Nationwide Financial)
- Week 9 Life Insurance (Nationwide Financial)
- Week 10 Inflation and the Impacts to Pricing Auto Insurance (Grange)
- Week 11 \& 12 Individual Presentations
- Week 13 \& 14 Data Analysis and Modeling Projects

- ACADEMIC MISCONDUCT

It is the responsibility of the Committee on Academic Misconduct to investigate or establish procedures for the investigation of all reported cases of student academic misconduct. The term "academic misconduct" includes all forms of student academic misconduct wherever committed; illustrated by, but not limited to, cases of plagiarism and
dishonest practices in connection with examinations. Instructors shall report all instances of alleged academic misconduct to the committee (Faculty Rule 3335-5-48.7). For additional information, see the Code of Student Conduct at http://studentlife.osu.edu/csc/ .

- DISABILITY SERVICES STATEMENT

The University strives to make all learning experiences as accessible as possible. In light of the current pandemic, students seeking to request COVID-related accommodations may do so through the university's request process, managed by Student Life Disability Services. If you anticipate or experience academic barriers based on your disability (including mental health, chronic or temporary medical conditions), please let me know immediately so that we can privately discuss options. To establish reasonable accommodations, I may request that you register with Student Life Disability Services. After registration, make arrangements with me as soon as possible to discuss your accommodations so that they may be implemented in a timely fashion. SLDS contact information: slds@osu.edu; 614-292-3307; slds.osu.edu; 098 Baker Hall, 113 W. 12th Avenue.

Evaluation

Self Evaluation

Your Name	
Attendance Grade:	
Comments	Contribution Grade: -

Peer Evaluation

Team Member Name Attendance Grade: Comments	Contribution Grade:
Team Member Name Attendance Grade: Comments	Contribution Grade:

SAMPLE LECTURES AND PROJECTS

- Property and Casualty Insurance Pricing Considerations Lecture Slides and Project Assignment

Property and Casualty Insurance
Pricing Considerations
January 28,2020
Bob Weishaar

1

Agenda
\gg Introduction to personal lines auto pricing considerations
$>$ Integrated Pricing
$>$ Price elasticity modeling

3

What are some other driver attributes that might matter?

- How important are prior accidents and violations?
- Is a person's credit score related to whether they are likely to have an accident?
- Should you pay more or less for selecting higher "limits" of insurance?
- What about prior limits of insurance?
- Annual miles driven?
- Work schedule?
- Number of Facebook friends?

Introduction

Bob Weishaar

- Ph.D. Mathematics and Masters of Applied Statistics, OSU
- Fellow of the Casualty Actuarial Society (FCAS)
- VP, Small Business Analytics, Cincinnati Insurance Company
- Pricing, research, and consulting roles at Farmers, Nationwide, LexisNexis, State Auto, and Motorists

The views expressed in this presentation are those of the speaker and not any third party.

2

4

What are some vehicle attributes that might matter?

- Type of vehicle
- Age of vehicle
- Number of previous owners of car
- Vehicle safety features ... making cost higher or lower?

What geographical data matters?

- Population density (city vs country)
- Crime statistics
- Weather patterns
- Traffic patterns: What would a roundabout do to frequency and severity?

7

Simplified auto pricing rating algorithm > Policy premium = Sum (Vehicle premiums) $>$ Vehicle premium = Sum (Coverage premiums) > Coverages: Bodily Injury (BI), Property Damage, Comprehensive, Collision, Uninsured Motorists, etc. \Rightarrow BI premium = $>$ Base rate (e.g., \$341) $>$ * territory factor (e.g., 1.7 for urban versus 1.0 for rural) > * age factor (e.g., 3.2 for 18 year old versus 1.0 for 50) $>$ * gender factor (e.g., 0.95 for female) $>^{*}$ credit factor (e.g., 0.70 for good credit) $>$ * increased BI limit factor (e.g., 1.5 for $\$ 300,000$) > * prior BI limit factor (e.g., 0.8 for $\$ 300,000$)

9

11

Cell phone data

- Could you calculate annual miles driven from a cell phone?
- How would you know if the cell phone owner was driving?
- Side of car entered
- "Finger print"
- What else might matter?
- Braking, acceleration, and cornering
- How does this compare to the use of age?
- How about prior accidents and violations?
- Speed
- Time of day
- Location
- Distracted driving

8

10

12

Metrics that influence pricing decisions

13

15

17

14

16

18

19

Notes on "Price Optimization"
$>$ Price Optimization is a broad expression applied to a set of
pricing strategies in the insurance industry
$>$ Several states have expressed concerns about some of the
techniques being employed
$>$ Many of the examples in this presentation and corresponding
problem set are used only to illustrate mathematical and
\quad economics concepts
$>$

Due to the negative connotation of the phrase "price optimization," these techniques are now often referred to by other terms such as "integrated pricing"

21

23

20

22

24

25

27

26

28

```
Examples of regression models in insurance
    Loss
        Frequency: Log link with Poisson error
             Incidence: Logit link with binomial error
            Severity: Log link with gamma error
            > Pure premium: Log link with Tweedie error
    > Strike rate: Logit link with binomial error
    > Marketing response: Logit link with binomial error
    > Elasticity: Nonlinear form
        Need strike rate between 0 and 1
    Need coefficient of premium differential to be negative (higher price
            \rightarrow \text { lower volume)}
```


31

Conclusion	
$>$ Actuaries play critical functional roles in insurance companies:	
$\quad>$ State rate indications	
$\quad>$ Reserve analyses	
$\quad>$ Etc.	
$>$	Product Management centralizes P\&L (profit \& loss)
responsibility.	
$\quad>$ Often filled by Actuaries	
$\quad>$ Increasingly rely on actuaries for broader analytics support	
$>$	Even without sophisticated models, a commitment to the
portfolio simulation mindset improves decision making	

33

Elasticity modeling is a difficult business problem

> Target is unknown
> Contrasted with loss or strike rate modeling
$>$ Cannot offer same customer two different prices at same point in time. Alternatives:
> Random price tests: only way to get truly unbiased estimates of elasticity (common outside United States)
> Other methods introduce bias

- Over time - competitor prices and marketing programs change
- Between segments - Segment behavior might cause differences
$>$ You intend to change one of the predictors (price), so an accurate coefficient is important. In many models, only the prediction is important.
> Suppose: Strike rate $=a^{*}($ age $)+b^{*}($ years licensed $)+c^{*}$ (price)
> If a and b are "wrong", not a big deal. (Should still try to get this right, of course)
If c is wrong, results could be disastrous. But price is generally a function of the other attributes!

| Using elasticity to meet business objectives | |
| :--- | :--- | | Find the price change that maximizes total profit... | |
| :--- | :--- |
| Price change 0%
 Price 100
 Costs 80
 Volume 1000
 Elasticity 2
 Total profit 20000 | |

34

P\&C Pricing Considerations

January 28, 2020

Robert_Weishaar@cinfin.com

Definitions:

- \quad Profit $=(\text { Price-Costs) })^{*}$ (Policy Count $)$
- Margin (which is profit percentage or ratio) = (Price-Costs)/Price
- Costs $=$ losses + expenses
- Strike rate: Percent of offers accepted, called close (or hit or conversion) rate for new business and retention for renewals. We'll take strike rate to be a function of price in these problems.
- Elasticity: -(\% change in strike rate) $/(\%$ change in price $)=-\left(\frac{\Delta S}{S}\right) /\left(\frac{\Delta P}{P}\right)$
- Elasticity can also be written as $-\left(\frac{S^{\prime}}{S}\right) /\left(\frac{P^{\prime}}{P}\right)$ which simplifies to $-\frac{S^{\prime} P}{S}$
- Be careful of negative signs! In the math, elasticity is a positive number that measures the strength of an inverse relationship. In discussions, the negative direction might be emphasized by actually saying it is "negative."

Note: Unless otherwise directed, treat elasticity in a "simple" manner. For example, if price is currently $\$ 100$, volume 1000 , and elasticity 2 , then a 10% drop in price to $\$ 90$ increases the volume by $20 \%(=2 * 10 \%)$ to 1200 . On the other hand, if you drop the price first to $\$ 95$ and then $\$ 90$ and use an elasticity of 2 in each step, you'd get a new volume of ~ 1216. In reality, elasticity is a point estimate and doesn't apply to every jump in price.

Problems (Hint: Use Excel Solver add-in when finding numerical solutions.)
0. Suppose there are two segments A and B with the following characteristics:

	A	B	Cummulative
Price	200	200	
Profit per policy	30	30	600,000
Policy Volume	10,000	10,000	20,000
Elasticity	4	2	

a. Find prices that maximize profit and hold cumulative volume constant. ($\$ 191.67 \& \$ 216.67 \rightarrow \$ 641,667$)
b. Find prices that maximize volume and hold cumulative profit constant. ($\$ 188.21 \& \$ 213.20 \rightarrow 21,038$)

1. Find the one-year profit maximizing margin as a function of elasticity only given that:

- Elasticity, cost, and quote volume are constant
- Profit $=($ price-cost $) *$ quote volume * strike rate
(This is a calculus problem, and you'll need to use the product rule. Profit is a function of price, and you want to maximize profit by changing price. Strike rate is also a function of price. In the end you should have margin as a simple function of elasticity ... all other constants should drop out.)

2. Suppose your book consists of blue and red cars with the following metrics:

	Blue cars	Red cars
Loss	300	350
Expenses	60	50
Elasticity	2	4
Quote volume	2000	1000
Close rate	40%	30%
Price	500	500

a. Find prices that maximize profit dollars
b. Do these prices agree with your derivation in \#1? Why or why not?
c. Maximize profit subject to the constraint that no volume is lost.
d. Maximize volume subject to the constraint that no profit is lost.
3. Your competitive intelligence team has notified you that competitors have started using sod type in pricing home insurance. Houses with fescue lawns have losses that are 20% higher than those with Kentucky blue grass. Competitors begin charging 5% more for fescue and 5% less for blue grass. You study the segments and find that the fescue owners are more elastic. Given these values:

	fescue	BG
quotes	1000	1000
close rate at competitive position of 1	10%	10%
Previous prices (you and competition)	$\$ 300$	$\$ 300$
Actual losses and expenses	$\$ 300$	$\$ 250$
New competitor price	$\$ 315$	$\$ 285$
Elasticity	3.0	1.5

a. What happens to profit and volume if you do nothing in reaction to your competitors' changes? (For simplicity, use $\$ 300$ in the denominator for all price change calculations.)
b. Should you implement a sod factor in your rating plan?
c. What factors should you use if you want to maximize volume while maintaining original profit levels?
d. Assuming regulators are fine with sod type as a rating variable, could you support the factors you selected in c ?
4. You are devising a new rating plan that rates only on how long a policy has been in effect. You are given the following information:

Loss and expense	400
NB Elasticity (sensitivity to change from current price)	5
Renewal Elasticity (sensitivity to rate change from prior term)	0.5
Price	500
Quotes	1000
Close rate (at current prices)	20%
Retention rate (when no rate change)	90%

Your new prices should be of the form: price $=x y^{t}$ where t is the number of terms the policy has been in effect and x and y are constants that are fixed from the beginning (you can't change them each year). For example, $x=100$ and $\mathrm{y}=0.9$ means new business pays $\$ 100$ and each year the customer gets a 10% discount. $\mathrm{y}=1.2$ means they pay 20% more each year. Let $t=0$ for new business. You will start writing this business in a new company. Note that for new business, elasticity measures sensitivity to a change from the current price of $\$ 500$. For renewals, customers are sensitive to the change from the price paid in the previous term.
a. Determine x and y so that profits are maximized in the third year of the new company's operation.
b. Determine x and y so that volume is maximized in the third year of operations given that profit is limited to 15% of premium.
NOTE: In the "third year" of operations, the company will have new business, business that is one year old, and business that is two years old. You want to consider the whole book of business.
5. Recessive Corporation is a small auto insurance company with 100 annual car policies, each priced at 120 dollars. With no change to price, the company expects to lose 20 of these policies to competitors resulting in an 80% policy retention. A pricing actuary has advised you that the renewal elasticity for this business is 2.0.
a. Calculate the expected policy retention if Recessive decides to decrease their price to 60 dollars, treating elasticity in the simple manner described in the Note above.
b. Now suppose the strike rate for a given price (x) is represented by the function, $Y=\frac{1}{1+e^{a x+b}}$. Using the information from Recessive, calculate the a and b values for this function.
c. What is the expected policy retention after the same decrease to premium using the new logistic form?
d. Identify an issue which may arise if Recessive decides to rely on the answer in part (a).
e. To check that the simple approach is reasonable for small price changes, calculate the percent impact to volume if price increases to $\$ 121.20$ (a 1% increase).
Hint: Apply the quotient rule to find Y^{\prime}. Don't forget elasticity $=-\frac{Y^{\prime} x}{Y}$

SAMPLE LECTURES AND PROJECTS

- Splines, Smoothing, and Bootstrap Lecture Slides and Project Assignment

1

3

5

2

Smoothing Splines

- The main idea behind smoothing splines is to fit low-order piecewise regressions to the data.
- Piecewise means that you don't have to have a single model to fit the whole curve - so you minimize systematic
misfits.
. Low-Order means that are less likely to fit to noise in the data and extrapolation is generally safer.
- Basic process is:
- Define the boundaries between the pieces ("knots"). In general want wider pieces where the data is thin or
- Choose the polynomial function ("basis function"). The higher the polynomial the smoother the fit. May allow
- Fit the piecewise regressions.
- Can enhance this method by choosing something more sophisticated than polynomial basis functions. B-splines
are a popular choice that is more numerically stable than ordinary polynomials.

4

6

7

9

11

Kernel Mean

- The mean is a $0^{\text {th }}$ order polynomial

The Normal Kernel is a common choice for computing the weighted average. Data structure can drive election of other kernels.

- The main modeling choice is the The main modeling choice is the or "smoothing" parameter.

Choice is judgmental. Generally want to see a few bumps in the fitted curve but not too many.

8

Kernel Mean VBA Function

nomen

summe - sumax + ur

next i

10

12

Stochastic Projection

-What do we mean when we say stochastic projection?

- Stochastic Integration

Estimating a statistical measure such as expected value, a percentile or CTE.

- Solve Heat-Equation PDE Estimating risk-neutral values.
- Real-World Scenario Testing

Evaluating what would "really happen" in individual scenarios.

- Prescribed Calculation

Prescribed calculations performed on prescribed scenarios.

- "Nested Stochastic" situations combine multiple techniques.

Bootstrap Estimation

- You can't control what you can't measure!
- When you run a simulation and compute a metric, how do you know if you are close to the "true" answer?
- The brute force approach is to...
- Run a really large simulation and see what result you get.
- Run multiple simulations and see how "repeatable" your answers are.
- Both are hard to do.
- Can you do something easy and get the same information?

15

Simulation Performance

- Simulations processes typically highlight precision. (Is my answer this quarter similar to last quarter?)

Close attention to specifics of valuation problem can improve precision.

Low accuray
High precision

- Accuracy matters over the long term. (Both good and bad valuations eventually converge to
- Inaccuracy usually the result of
poor modeling techniques.

14

Bootstrap Estimation

Concrete Example

- You run 250 scenarios and measure the 95CTE of PV cashflow - Is the value you measured close to the true fully-converged value?
- How many scenarios would you have to run to be close enough?
- The "information" from your simulation consists of 250 PV cashflow values.

Bootstrap Estimation

Method

1. From the observed 250 PV cashflow, grab a random sample (with replacement) of n PV Cashflows. This is a statistically valid proxy for running an entirely new simulation of n scenarios - but without the work!
2. Compute your metric of interest (95\%-ile of PV Cashflow).
3. Repeat this process many times to estimate the standard error (sampling range) of your metric.
4. The asymptotic distribution of your sample metric is Normal, and you can use the "square-root rule" to estimate required sample size.

19

20

Part 1

When computing the value of equity derivatives, a common technique is to generate "risk-neutral scenarios" simulations of equity paths - and use these paths to compute the expected payoff of the derivative. This technique is called Monte Carlo valuation.
For this project, we are going to use a Monte Carlo valuation to duplicate the Black-Scholes formula results.
(There are multiple ways to solve the same math problem! So you can check your answers using closed form formulas.) Assume the following values.

1. In spreadsheet or other mathematical modeling package, simulate risk-neutral equity scenarios

Start each scenario with $\mathrm{S}_{0}=1$ and use $S_{t}=S_{t-1}+r S_{t-1} \cdot d t+\sigma S_{t-1} \cdot Z \cdot \sqrt{d t}$ where Z is a random draw from a standard Normal distribution. (Hint: you may need to use the Inverse CDF method to generate the Z draws.)
Generate 250 random scenarios, in monthly time increments, out to one year
Store the results in an array with 250 rows (250 scenarios) and 13 columns ($\mathrm{t}=0,1, \ldots 12$).
Scholes do know that you did this simulation properly? (Hint: what are the assumptions of the Blackscholes model?) What statistical properties of this data matrix can you evaluate. Show those tests.

21

Part 2

In practice it is usually very time consuming to run a Monte Carlo simulation, so we want to reuse our
calculation results wherever we can.
For this project, we are going to reuse the simulation results from the previous problem. We will develop a
"pricing formula" for puts with six months to maturity by comparing the payoff in month 12 to the equity leve "pricing formula" for puts with six months to maturity by comparing the payoff in m
Kernel Approach
Reusing the simulation results from Part 1 , compute the six-month present value of the put payoff at
maturity e er
monthmonths. $\max \left(0, X-S_{12}\right)$. This present values the 12 month put payoff to a date six
s earlie
2. Make a graph that plots $e^{-r \cdot 6 \text { months. }} \max \left(0, X-S_{12}\right)$ versus the equity level in month $6, S_{6}$. Add to levels at S_{6}. How do you interpret what you see?
3. Fit a kernel regression through the cloud of points in the previous graph. What smoothing constant makes sense. Compare this kernel regression to Black-Scholes price. How would you describe the quality
of fit? When is the kernel safe to use?
4. Use the bootstrap approach to estimate the standard error of the kernel regression as three different
levels of $S_{6}=\{0.8$, ,.0., 1.2$\}$. (Hint: You need to resample both S_{6} and S_{12} from the original simulation.) Do
these results confirm your observations in 3 ?

Part 3

- OLS Approach
- Repeat the previous analysis, substituting ordinary least-squares regression (cubic polynomial) for the kernel regression.
- Compare and contrast with the results you saw using the kernel approach. (Hint: you may want to plot the error=[regression answer]-[Black-Scholes formula answer] vs S_{6} for both the kernel regression and the ordinary least-squares regression.)
- Which method gives you more accurate valuations?
- Which method gives you more precise valuations?
- Do your answers depend upon the level of S_{6} ?
- For many practical applications, I care about the first derivative of the option value curve. How do the
Kernel and OLS methods compare? How could I adjust each method to provide better estimates of the first
der Kernel and
derivative?

